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PUMPING SPEED OF GETTER-ION PUMPS
AT LOW PRESSURES

Andras Dallos and Fortunat Steinrisser

Abstract

Pumping speeds of commercial diode and triode type getter-ion

pumps were measured for the gases HZ’ He, and N2 over the pressure range

from about 10-11 Torr to 10_6 Torr. At 10-10 Torr, the pumping speed

was 15-25% of the speed at 10-6 Torr where the pumps attained the rated

speed. Pumping speed measurements as a function of time showed that the

pumping speed decreased generally only slightly over a period of one day.

Strong saturation was found only for He at pressures above 10-7 Torr.

No significant difference between diode and triode in the pumping speed

vs. time or vs. pressure curves was observed.

In the diode, pump currents were measured. The quantity
P-S/1I (P = pressure, S = pumping speed, and I = current) was found to

be pressure independent for short pumping times. The numbers (in

molecules or atoms pumped per charge) are: 0.5 (HZ), 0.6 (He), and

0.2 (NZ).




1. Introduction

Getter-ion pumps have been used for about ten years to obtain
low pressures. It is well known that the pumping speed of these pumps
is fairly constant over the pressure range from 10-4 to about 10-8 Torr.
For small pumps, no data have been published on their pumping speed below
10-8 Torr. Rutherford1 measured discharge intensities I/P (I = pump
current, P = pressure) down to 10'11 Torr. From the assumption that the
number of molecules or atoms pumped per electric charge (PS/I) is a
basic property of the pump and independent of pressure, he calculates
the pumping speed, S, from the discharge intensity I/P. Klopfer2 and
Davis3 estimated S from the pressure rise after turning off the pump at
very low pressures.

Saturation in getter-ion pumps has been observed by several
authors ’~., We know of no work in which pumping speeds at constant
pressure have been measured as a function of time. Under nonequilibrium
conditions, e.g. pumpdown of a system, it is difficult to separate the
influence of the rest of the system from that of the pump.

The first goal of this work was to measure S and I/P for a
small getter-ion pump down to very low pressures for different gases.
The second goal was to study saturation effects by measuring the pumping
speed as a function of time at constant pressures for a diode and a

triode type pump.

2. Method and Apparatus

The pumping speed was measured with the two-gauge method6

(pressure drop along a known conductance). Figure 1 shows the apparatus
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measured pumping speed at Gauge Two (PZ)

S = pumping speed of getter-ion pump taking into
consideration conductance G2

G1 = conductance between Gauge One and Gauge Two

G2 = conductance between Gauge Two and pump

PI’PZ = respectively, pressures in Gauge One and Gauge Two

Po = ultimate pressure of pump as measured by Gauge Two.

The pumps used in this experiment were commercial diode and
triode getter-ion pumps. The diode, which was rated at 15 4/sec:for
nitrogen, was operated at 7.2 kV in a magnetic field of 1400 Gauss. The
triode was rated at 8 4/sec. The voltage for the triode was 5 kV, the
magnetic field 1350 Gauss.

The vacuum system (Fig. 1) was made from Pyrex glass (Corning
7740) and had a volume of about 2 liters. A 2-stage fractionating
oil-diffusion pump (CVC GF-20), filled with Monsanto 0S-124 oil, pumped
the system to very low pressures before the getter-ion pump was started.
An optically dense zeolite trap filled with Linde 13 X molecular sieve

at liquid nitrogen temperature prevented backstreaming oil from getting
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into the system. A one-half inch Granville-Phillips valve separated the
trap and diffusion pump from the rest of the system during the pumping
speed measurements. This valve was also necessary for proper system
processing (see below). With this valve closed, it was possible to open
the rest of the system up to air with the diffusion pump running. Total
pressure measurements were made with Bayard-Alpert gauges (WL-5966) and,
in some cases, with Schuemann photocurrent suppressor gauges7. Partial
pressure measurements were made with a 90° magnetic deflection type mass
spectrometerg. Gas was admitted from one liter Linde flasks through a
one-half inch Granville-Phillips valve and a leak valve. The latter was
operated by a Granville-Phillips automatic pressure controller which kept
the pressure constant within a few percent.

System processing followed the procedure described by Singleton
and Lange9. After any glassblowing, the part of the system which was
exposed to air was first roughed with a forepump. When the system was
at ~10-3 Torr, the pump was sealed off and the valve to the diffusion
pump was opened for a few hours. Then the valve was closed again and
the trap baked for about four hours at 350°C. The valve and the glass
tubing between valve and trap were kept at 150°C. After bakeout, the
trap was immersed in liquid nitrogen, the valve opened, and the system
baked for half a day at 350°C. The gauges were then outgassed at 50
watts grid bombardment power for about six hours. Again the valve was
closed, the trap baked as before and then cooled again. The pressure

dropped to the low 10-11 Torr range within an hour after opening the wvalve.




The getter-ion pump was finally started and the valve to the diffusion
pump closed,

Pumping speeds at constant pressure were recorded over a period
of one day. After every measurement, the system was processed. The whole
pressure range was investigated by changing the pressure in steps of a
factor of three or four.

In general, no attempt was made to regenerate the pump before

a pumping speed measurement except to bake it. When pumping helium for

-7 ) .
one day at pressures of 10 ' Torr or higher, however, strong saturation

was found. After the pumping speed measurement with helium, the pump was
bombarded with nitrogen for one hour at a pressure such that 50 watts power
was dissipated, During this bombardment the valve to the diffusion pump
was kept open. After this discharge cleaning followed by bakeout, the
re-emission of helium was seen to be very low even during pumping of
another gas. The cleanup process and the behavior of the pump afterward
was followed with the mass spectrometer.

Current measurements for the diode pump were made on the ground
return side. A shielded box with batteries provided 7.2 kV. The cable
to the pump was double-shielded. Under low humidity conditions, the
leakage current with the pump electrically connected was below 1 x 10-12 A.
For currents larger than a few microamperes, a regular pump power supply
was used.

Field emission currents in the triode pump reached values of
a few hundred microamperes. It was impossible to subtract these currents

because they changes rapidly. The diode showed field emission up to a
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few microamperes, but only when pumping nitrogen, and even in this case
only occasionally. A straight line on a Fowler-Nordheim plot was
considered a clear indication of field emission. 1In the diode pump the
whiskers responsible for field emission could be flattened by application
of an overvoltage of 20 to 25 kV. To get still lower field emission
currents, nitrogen was admitted at 10-5 Torr with the overvoltage applied.
Short starting times in the presence of field emission were observed at
low pressures due to the abundance of electrons.
The two-gauge method requires only pressure ratios to be measured.

No absolute pressure calibration was therefore made. Gauge Two was our
standard, and the sensitivity of Gauge One compared to Gauge Two was
determined with helium over a wide pressure range. The difference in
sensitivity never exceeded 107 and was taken into account for the pumping
speed calculations. The conductance to the gauges was increased to about
15 g/sec for nitrogen by attaching a one inch tubulation to them. Ion
currents in the gauges were measured with Keithley micromicroammeters which
were accurate within a few percent as compared with a constant current
source. The difficulties of measuring hydrogen pressures with hot fila-
ment jonization gauges are enumerated in several papers by Hickmottlo. An
enhanced pumping rate for hydrogen was observed in the presence of a hot
(T > 1100°K) filament due to dissociation of hydrogen. The pumping speed
of glass or metal walls for atomic hydrogen is very large. To avoid
dissociation, low temperature filaments have to be used in gauges. Unfor-
tunately, the ion gauges used for these measurements had only regular

tungsten filaments. The emission current in the gauges was held at 1 mA




for the hydrogen measurements compared to 10 mA for nitrogen and helium.
Pumping speed measurements for the clean system with the pump current
off showed values of about one 4/sec for hydrogen and .15 4/sec for

nitrogen for times up to one day and at different pressures. These values

were subtracted from the results obtained with the pump current on. The
system was allowed to reach an equilibrium before measurements were made.

The conductance G, was .5 4/sec, and G2 about 15 £/sec for

nitrogen. The error in determining these values is less than 107 for

Gl’ less than 207 for G2. As can be seen from formula (2), errors in

G2 have an influence on § if SM is of the same order of magnitude as GZ'
This is the case only for nitrogen. The overall error in the determina-

tion of S is estimated to be less than 30%.

3. Results

The values for pressure, P, and pumping speed, S, in this

*
paragraph always mean the values inside the pump. Pressures are the

actual pressures for the different gases (not nitrogen equivalent).

In Fig. 2, I vs. P curves for the diode pump are given for the

gases hydrogen, helium, and nitrogen. The slope is practically the same

for the different gases at the same pump current. Above :;0-7 Torr for

. -9 -8 . Y ys
nitrogen, I < P. Between 10 ~ and 10 = Torr, there is a transition

region. No bistable operation was found, i.e., the pump current at

*

Pumping speeds are generally given as speeds at the pump flange.
In this paper, however, P and S are correlated to I. This should be done
at the same point, i.e., inside the pump.



F------------

given pressure was always the same whether one was increasing or
decreasing the pressure. Below the transition region, I « Pl'z. The
pump was found to go out regularly when the pump current dropped below
2 x 10-11 A. This current corresponds to a nitrogen pressure of

~l x 10"12 Torr. To reach this condition, the valve to the diffusion
pump had to be opened and the gauges shut off.

For short pumping times, the number of mclecules or atoms
pumped per electric charge was found to be independent of pressure within
the accuracy of our measurements., The values for hydrogen, helium, and
nitrogen are, respectively, 0.5, 0.6, and 0.2. Over a period of one day,
these values decreased significantly at pressures above 10-8 Torr for
all gases investigated, the decrease being especially high for helium.
One exception is the case of hydrogen in the triode pump above 10-7 Torr.
Here, the pumping speed increased with time. The same effect has been
observed in the diode pump at pressures of ~10-5 Torr after pumping for
two days ~. It is believed that this results from a cracking of the
titanium cathode after prolonged hydrogen pumping which increases the
permeability of the metal for the gas.

Fig. 3 shows pumping speed, S, and discharge intensity, I/P,
plotted versus pressure in the diode pump for different gases and
pumping times T = O and T = 1 day. The dependence of I/P on pressure for
nitrogen is practically the same as reported by Rutherford1 for the same
magnetic field and geometry. Our absolute values of I/P for T = 0 are
larger by a factor of 2.7 due to the larger voltage (7.2 kV instead of

3 kVv). Fig. 4 shows the pumping speeds for the triode for similar

conditions.




4, Discussion

In getter-ion pumps, the discharge intensity, I/P, is
proportional to pumping speed, S, for different gases and pressures

-6
below 10 = Torr for short pumping times. In other words, the number of

molecules or atoms pumped per electric charge is pressure independent.

Saturation occurs after pumping times of the order of a day

-7 . . . . .
at pressures above 10 Torr. This saturation is serious only in the

case of noble gases. All other gases are pumped for a very long time
with a pumping speed which is a large fraction of the initial speed.

In the case of hydrogen in the triode, the pumping speed increased with
time for many days at pressures above 10-7 Torr.

No significant difference in pumping speed or saturation

time was found between diode and triode.
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